取得連結 Facebook X Pinterest 以電子郵件傳送 其他應用程式 4月 03, 2018 賭波 紀錄 本金5000. 盈利 + 1520 總共 6520 每日買1-3場 精選 2018-04-04 最佳投注 讓球星期二 13 祖雲達斯 (主) 對 皇家馬德里 (客)客 [0] @ 1.76 $2000$2,000.00$3,520.00 取得連結 Facebook X Pinterest 以電子郵件傳送 其他應用程式 留言
tensorflow 學習之(2_ 7月 23, 2017 tf.train API 解 equation, y = W*x +b , The completed trainable linear regression model is shown here: import numpy as np import tensorflow as tf # Model parameters W = tf . Variable ([. 3 ], dtype = tf . float32 ) b = tf . Variable ([-. 3 ], dtype = tf . float32 ) # Model input and output x = tf . placeholder ( tf . float32 ) linear_model = W * x + b y = tf . placeholder ( tf . float32 ) # loss loss = tf . reduce_sum ( tf . square ( linear_model - y )) # sum of the squares # optimizer optimizer = tf . train . GradientDescentOptimizer ( 0.01 ) train = optimizer . minimize ( loss ) # training data x_train = [ 1 , 2 , 3 , 4 ] y_train = [ 0 ,- 1 ,- 2 ,- 3 ] # training loop init = tf . global_variables_initializer () sess = tf . Session () sess . run ( init ) # reset values to wrong for i in range ( 1000 ): sess . run ( train , { x : x_train , y : y_train }) # evaluate training accuracy curr_W , curr_b , curr_loss... 閱讀完整內容
留言
張貼留言